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Abstract—Initial iterations or generations of this particular 

Genetic Algorithm (GA) implementation for optimizing a 

semiconductor fabrication process, not only search for an 

optimal solution, but also, with the aid of a visual tool, help 

understanding the complex characteristics of the model. 

Finally, thanks to this visual analysis, some adjustments are 

proposed to the algorithm execution in order to drive the 

search more effectively, as explained using a reference TCAD 

simulation-based example. 

I. INTRODUCTION 

Typically, TCAD (Technology CAD) is used for 
parametric optimization: Each simulation is described by a 
set of parameters, whose values can be changed to represent 
different conditions for the simulation. The simulation yields 
one or more responses that result from the parameter 
combination. 

The optimization is focused on finding the best possible 
combination of parameter values that results in a set of 
responses optimized with different criteria. Several 
algorithms can and are used for this optimization, among 
them, the Genetic Algorithm. One of the key aspects of the 
optimization of these models is a proper definition of the 
goal function.  

A. The optimization goal function 

This GA implementation considers that each response 
might be optimized with a different criterion (maximization, 
minimization, and close to a given value)., therefore requires 
that these responses values are normalized in a joint goal 
function, producing a single comparable value, to allow the 
evaluation of each experiment and their comparative 
optimality. 

This global desirability function considers that [1]: 

 A normalization function is applied to each simulation 
response, producing a value in the range of -1 to 1. 

 Different desirability functions are used depending on 
whether the simulation response is to be minimized, 
maximized, or has an assigned target value. 

 A user-defined weight is assigned to each response, 
representing its relative importance in the goal 
function result. 

 These normalized and desirability-adapted values are 
summed up for the final goal function result, 
multiplying each of them by the corresponding 
weight. 

To illustrate the use of an optimization model using this 
GA implementation, a semiconductor topography simulation 
example will be used for searching an “optimal” or ideal etch 
deposition, using one of the available deposition models. 

B. An example: Optimization of a deposition process 

This example is focused on understanding and ultimately 
finding the best conditions for a specific semiconductor 
topography resulting from operating a given deposition 
model. For this example, it is relevant to know that the 
deposition model is based on four factors (sputc1, sputc2, 
sputc4, and time) in an angle-dependant formula. Changes in 
these three factors affect the resulting shape of deposition 
layer, in this example a Nitride layer. Devices specifications 
define only certain deposition results as valid, and moreover, 
a resulting layer as shown in the next image.  

To describe this Nitride layer shape, some measurements 
are made in specific points. In this case, three points are 
chosen for measurement reference and are shown in the next 
image. These values are labeled Ta1, Ta2, and Ta3, 
considered as the model “responses” for the optimization 
approach used here. 

Therefore, for optimization purposes and goal function 
evaluation, a formula which includes these four factors is 
used: 

T = F(sputc1, sputc2, sputc3, time)  

where: 

T is a vector including the three dimension values 

Ta1, Ta2, and Ta3. 
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Figure 1.  The Nitride deposition resulting layer, being measured in three 

different points. 

The optimization problem is finding the best combination 
of the 4 parameters that produces the desired deposition layer 
shape, defined by measuring Ta1, Ta2, and Ta3. These 3 
target values are obtained from a TCAD simulation, using 
Synopsys Sentaurus Topography [2], reproducing the 
physical behavior of the deposition model, and are initially 
equally-weighted for goal evaluation purposes, meaning that 
all of them are equally important when they are considered in 
the optimization goal function. 

II. A GENETIC ALGORITHM IMPLEMENTATION 

The Genetic Algorithm is an optimization approach, part 
of what is known as “Evolution Programming”, and has been 
around for more than 40 years [3]. Also, this method offers a 
powerful way to explore the domain space of possible 
solutions, while other algorithms perform better when 
approaching a local search [4]. 

The main idea of this algorithm is that an initial 
population of chromosomes represents an initial set of 
possible parameter combinations or experiments. Iteratively, 
this initial population evolves to a better set of chromosomes, 
including a best solution, considered as the optimum. There 
are several ways to execute this evolution, including 
crossover, and mutation, among others. The optimality of 
each chromosome is evaluated using a fitness function. 

For this type of models, some adaptations were made to 
the GA implementation: Each chromosome is a multi-
parameter experiment and produces more than one result, 
which are then combined in the previously mentioned 
normalizing goal function that finally returns the fitness 
value used for optimization. In this case the target is 
minimizing this goal function result. 

Following the standard GA implementation, next 
generation is produced by combining elite population, 
formed by the best chromosomes in previous generation 
surviving to the next, crossover, consisting of a child 

resulting of the weighted average of two semi-random 
parents, and mutation, which is the result of a new 
experiment version resulting as a variation of some gene in 
the previous version. The algorithm runs for a user-defined 
number of generations. 

For this implementation, given that the standard GA will 
perform differently for different models, a few algorithm 
parameters were added to refine the behavior and the way in 
which each new generation is computed. The most relevant 
parameters are: 

 Initial generation. While often the initial generation 
is produced randomly, in this case a Design of 
Experiments (DoE) is used, considering that 
different designs cover the solutions domain 
differently [7], and it is up the user to define a 
compromise between domain coverage and 
simulation cost. 

 Number of generations. Number of different 
populations produced throughout the process. 

 Fitness base. In order to properly compare fitness 
results for different experiments, there are some 
normalization functions that compensate 
exaggerated peaks in the fitness results. 

 Elite population size. Number of the fittest 
experiments kept for the next generation. 

 Mutant percentage. Proportion of mutants in 
relation to the total population in each generation. 

 Mutants from elite. Indication whether mutants are 
generated from the elite population or just any other 
experiment in the generation. 

 Mutation percentage. The amount of mutation 
should be applied to a gene (parameter value) in a 
chromosome. 

Aside from this, the optimization criterion for each 
response, as well as its relative importance or weight can be 
set for the optimization execution. 

Although each of these parameters has a default value, 
which allows a new model to be immediately tried out, 
without needing to set any of them, it’s possible to set some 
or all of these parameters to drive the algorithm through the 
actual model. 

Another particular feature of this implementation is the 
generation of a “generations file”, which is basically a table 
that registers all the chromosomes configuration and their 
resulting responses and goal value. This table can be 
examined with numerous analysis tools to visually review 
the iterative process and the resulting evolution of the model 
towards a better or fitter set of chromosomes. 

In this case, a parallel coordinate plot [8] displays 
simultaneously all chromosomes, becoming a key element to 
understand different aspects of the model, by visualizing and 
analyzing each generation separately.  



III. USING THE GA FOR VISUAL EXPLORATION  

Running the model for a couple of initial generations 
(between 4 and 10), with the default configuration, delivers 
information about some of the specific characteristics of the 
model, each generation offering some insights about some of 
its aspects.  

A. First generations 

Analyzing the first generations, using a parallel 
coordinate plot, allows to realize, as shown in the next 
image, how well covered is the domain space with the 
chosen DoE, or not. 

 

Figure 2.  First generation used in the GA execution after evaluating the 

fitness or goal function. On the left, each parameter value and its range. On 

the right, with a gray background, each of the simulation-obtained 

measurements and corresponding goal function result. In the middle, 
generation number serves as a reference to understand the evolution. 

Parameter values and ranges indicate whether the domain 
has been covered sufficiently. Also resulting diverse 
measurements evidence a rather wide variety of simulation-
obtained shapes for the Nitride layer. 

Each chromosome’s fitness is displayed in the Goal axis 
(note that less Goal value equals better fitness for this goal 
minimization model), and it shows that this initial population 
produced several fitted solutions, as well as other not so 
fitted ones. One particular solution shows the worst fitness as 
displayed by the red line in the upper edge of the yellow 
section at the right. The significant difference of this solution 
with the others might suggest that this belongs to a low 
potential area. 

B. Intermediate generations 

Analyzing an intermediate generation allows 
understanding the speed of evolution and the size of the 
genetic pool. 

As shown in the next image, the population converged in 
just a couple of generations to a set of very fit experiments 
belonging to a reduced portion of the whole domain space, 
but the variation on some parameter values suggest that these 
chromosomes are still diverse enough not just to cover a 
small high-potential area, but rather a big one, or several 
small ones. 

 

Figure 3.  Intermediate generation plot. 

Also, the variation in individual responses values 
suggests that the set of fitter solutions found so far, cover a 
rather wide variety of solution instead of converging to a 
reduced area. 

C. Last exploratory generation 

Finally, when analyzing the last exploratory generation 
resulting plot, other different aspects of the algorithm 
performance can be discovered. Considering that members 
of this last generation are evaluated as the overall best-found 
chromosome set, their gene values ranges suggest the 
optimal parameter values ranges for this deposition model. 

At the same time, the variability in individual responses 
values for these similarly goal-function evaluated solutions, 
suggests that one or more of these responses’ criterion has 
not been completely satisfied, evidencing a compromise 
when targeting a multi-response model. 

 

Figure 4.  Last generation produced by the initial GA execution.  

In the previous image, the right side of the plot shows that all 
experiments in this generation, displayed in red, are 
considered to be almost equally fit, according to the goal 
function value. As a confirmation, individual measurements 
values vary only a fraction, therefore suggesting that the 
whole population contains chromosomes that are similarly 
good for the desired result, and that the three responses 
criteria are equally solved in this case. But the left side of the 
plot evidences a visually significant variation in the 
parameters values, once again, suggesting that these 
chromosomes belong to different areas of the domain. 



IV. ANALYSIS-DRIVEN ADJUSTMENTS 

After analyzing the initial exploratory run of the 
algorithm, several conclusions and decisions can be made 
that finally translate into changes to the algorithm behavior 
parameters and try a new adjusted run, potentially leading to 
better results. These conclusions might even lead to try a 
different local search optimization algorithm in order to 
refine the best solution.  

Having reviewed the results of the exploratory runs, 
analysis-driven adjustments can be made. 

 Coverage quality in the first generation might lead to 
decide whether a more complete DoE is needed or if a 
simpler and less-costly one is enough in a definitive 
and longer optimization run of the algorithm. 

 Experiments that result in a bad (high) goal value, 
discovered in early generations might suggest 
redefining the parameter value ranges to leave these 
experiments out from the beginning, reducing the total 
domain space, although not necessarily reducing the 
number of simulations needed. 

 In any generation, analyzing the variance on goal 
function results might lead to decide a different type 
of fitness base in order to properly compare highly 
different response-resulting experiments. On the other 
hand, an excessively flat plot of the goal function 
results is a good candidate for a more sensitive fitness 
base, to allow a clearer comparison between similar 
experiments. 

 If an intermediate generation is too close to the 
optimum, it might be the indication that the algorithm 
drives the population too aggressively towards 
convergence, and left out areas that potentially could 
produce better results. This could be adjusted by 
reducing the amount of individual mutation allowed, 
or even reducing the weight influence of the fittest 
parent in crossovers. 

 If one or a few experiments survive many generations 
and eventually lead to regular results, might be an 
indication that the elite population size is too large. 
Decreasing the elite set size to only one experiment 
might force the algorithm to explore other initially 
low-potential areas that might lead to narrow good-
potential sections. 

 On the other hand if some very good solutions are 
becoming extinct in intermediate generations, it is an 
indication of the existence of more than one good 
potential area, and a clear recommendation to increase 
the size of the elite population. 

 If the convergence to the optimum in the last 
generation is not evident enough, it might a clear 
indication that more generations are needed, or even 
that a gradient-based algorithm is needed for the final 
approach to the optimum solution. 

 A slow convergence with too many low-fitness 
chromosomes is an indication that the area in which 
the optimum candidate is located might be too narrow. 
An indication to adjust the algorithm to converge 
more directly. For example, reduce the percentage of 
mutants in the whole population, and/or that mutant 
population should be produced from elite population 
only, and use a larger elite population size. 

 Analyzing the last exploratory generation’s individual 
responses helps validating if defined weights are right. 
If all the near-optimum solutions present a high 
variability in one or more individual responses values, 
it is an indication that the balance between individual 
targets for responses is compromised. Solving this 
means assigning the particular response a higher 
weight in comparison to the others, in order to 
properly understand its real influence in the model 
and to balance the goal function evaluation. 

V. CONCLUSION 

As the technology evolves, the underlying TCAD process 
and device simulation models undergo enhancements and 
fine-tuning. Using a visual exploratory optimization 
approach, which tunes the algorithm to match the changes in 
the TCAD models and parameters, has proven to be an ideal 
technique to maximize the results using an optimization 
algorithm. These optimization algorithms have helped to 
better understand the intrinsic aspects of the TCAD models. 
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