
Using a Genetic Algorithm for

exploring a Semiconductor Fabrication Model

Rodrigo Sandoval

TCAD Technical Lead

Synopsys R&D Center

Santiago, Chile

rodrigo.sandoval@synopsys.com

Abstract—Initial iterations or generations of this particular

Genetic Algorithm (GA) implementation for optimizing a

semiconductor fabrication process, not only search for an

optimal solution, but also, with the aid of a visual tool, help

understanding the complex characteristics of the model.

Finally, thanks to this visual analysis, some adjustments are

proposed to the algorithm execution in order to drive the

search more effectively, as explained using a reference TCAD

simulation-based example.

I. INTRODUCTION

Typically, TCAD (Technology CAD) is used for
parametric optimization: Each simulation is described by a
set of parameters, whose values can be changed to represent
different conditions for the simulation. The simulation yields
one or more responses that result from the parameter
combination.

The optimization is focused on finding the best possible
combination of parameter values that results in a set of
responses optimized with different criteria. Several
algorithms can and are used for this optimization, among
them, the Genetic Algorithm. One of the key aspects of the
optimization of these models is a proper definition of the
goal function.

A. The optimization goal function

This GA implementation considers that each response
might be optimized with a different criterion (maximization,
minimization, and close to a given value)., therefore requires
that these responses values are normalized in a joint goal
function, producing a single comparable value, to allow the
evaluation of each experiment and their comparative
optimality.

This global desirability function considers that [1]:

 A normalization function is applied to each simulation
response, producing a value in the range of -1 to 1.

 Different desirability functions are used depending on
whether the simulation response is to be minimized,
maximized, or has an assigned target value.

 A user-defined weight is assigned to each response,
representing its relative importance in the goal
function result.

 These normalized and desirability-adapted values are
summed up for the final goal function result,
multiplying each of them by the corresponding
weight.

To illustrate the use of an optimization model using this
GA implementation, a semiconductor topography simulation
example will be used for searching an “optimal” or ideal etch
deposition, using one of the available deposition models.

B. An example: Optimization of a deposition process

This example is focused on understanding and ultimately
finding the best conditions for a specific semiconductor
topography resulting from operating a given deposition
model. For this example, it is relevant to know that the
deposition model is based on four factors (sputc1, sputc2,
sputc4, and time) in an angle-dependant formula. Changes in
these three factors affect the resulting shape of deposition
layer, in this example a Nitride layer. Devices specifications
define only certain deposition results as valid, and moreover,
a resulting layer as shown in the next image.

To describe this Nitride layer shape, some measurements
are made in specific points. In this case, three points are
chosen for measurement reference and are shown in the next
image. These values are labeled Ta1, Ta2, and Ta3,
considered as the model “responses” for the optimization
approach used here.

Therefore, for optimization purposes and goal function
evaluation, a formula which includes these four factors is
used:

T = F(sputc1, sputc2, sputc3, time)

where:

T is a vector including the three dimension values

Ta1, Ta2, and Ta3.

mailto:rodrigo.sandoval@synopsys.com

Figure 1. The Nitride deposition resulting layer, being measured in three

different points.

The optimization problem is finding the best combination
of the 4 parameters that produces the desired deposition layer
shape, defined by measuring Ta1, Ta2, and Ta3. These 3
target values are obtained from a TCAD simulation, using
Synopsys Sentaurus Topography [2], reproducing the
physical behavior of the deposition model, and are initially
equally-weighted for goal evaluation purposes, meaning that
all of them are equally important when they are considered in
the optimization goal function.

II. A GENETIC ALGORITHM IMPLEMENTATION

The Genetic Algorithm is an optimization approach, part
of what is known as “Evolution Programming”, and has been
around for more than 40 years [3]. Also, this method offers a
powerful way to explore the domain space of possible
solutions, while other algorithms perform better when
approaching a local search [4].

The main idea of this algorithm is that an initial
population of chromosomes represents an initial set of
possible parameter combinations or experiments. Iteratively,
this initial population evolves to a better set of chromosomes,
including a best solution, considered as the optimum. There
are several ways to execute this evolution, including
crossover, and mutation, among others. The optimality of
each chromosome is evaluated using a fitness function.

For this type of models, some adaptations were made to
the GA implementation: Each chromosome is a multi-
parameter experiment and produces more than one result,
which are then combined in the previously mentioned
normalizing goal function that finally returns the fitness
value used for optimization. In this case the target is
minimizing this goal function result.

Following the standard GA implementation, next
generation is produced by combining elite population,
formed by the best chromosomes in previous generation
surviving to the next, crossover, consisting of a child

resulting of the weighted average of two semi-random
parents, and mutation, which is the result of a new
experiment version resulting as a variation of some gene in
the previous version. The algorithm runs for a user-defined
number of generations.

For this implementation, given that the standard GA will
perform differently for different models, a few algorithm
parameters were added to refine the behavior and the way in
which each new generation is computed. The most relevant
parameters are:

 Initial generation. While often the initial generation
is produced randomly, in this case a Design of
Experiments (DoE) is used, considering that
different designs cover the solutions domain
differently [7], and it is up the user to define a
compromise between domain coverage and
simulation cost.

 Number of generations. Number of different
populations produced throughout the process.

 Fitness base. In order to properly compare fitness
results for different experiments, there are some
normalization functions that compensate
exaggerated peaks in the fitness results.

 Elite population size. Number of the fittest
experiments kept for the next generation.

 Mutant percentage. Proportion of mutants in
relation to the total population in each generation.

 Mutants from elite. Indication whether mutants are
generated from the elite population or just any other
experiment in the generation.

 Mutation percentage. The amount of mutation
should be applied to a gene (parameter value) in a
chromosome.

Aside from this, the optimization criterion for each
response, as well as its relative importance or weight can be
set for the optimization execution.

Although each of these parameters has a default value,
which allows a new model to be immediately tried out,
without needing to set any of them, it’s possible to set some
or all of these parameters to drive the algorithm through the
actual model.

Another particular feature of this implementation is the
generation of a “generations file”, which is basically a table
that registers all the chromosomes configuration and their
resulting responses and goal value. This table can be
examined with numerous analysis tools to visually review
the iterative process and the resulting evolution of the model
towards a better or fitter set of chromosomes.

In this case, a parallel coordinate plot [8] displays
simultaneously all chromosomes, becoming a key element to
understand different aspects of the model, by visualizing and
analyzing each generation separately.

III. USING THE GA FOR VISUAL EXPLORATION

Running the model for a couple of initial generations
(between 4 and 10), with the default configuration, delivers
information about some of the specific characteristics of the
model, each generation offering some insights about some of
its aspects.

A. First generations

Analyzing the first generations, using a parallel
coordinate plot, allows to realize, as shown in the next
image, how well covered is the domain space with the
chosen DoE, or not.

Figure 2. First generation used in the GA execution after evaluating the

fitness or goal function. On the left, each parameter value and its range. On

the right, with a gray background, each of the simulation-obtained

measurements and corresponding goal function result. In the middle,
generation number serves as a reference to understand the evolution.

Parameter values and ranges indicate whether the domain
has been covered sufficiently. Also resulting diverse
measurements evidence a rather wide variety of simulation-
obtained shapes for the Nitride layer.

Each chromosome’s fitness is displayed in the Goal axis
(note that less Goal value equals better fitness for this goal
minimization model), and it shows that this initial population
produced several fitted solutions, as well as other not so
fitted ones. One particular solution shows the worst fitness as
displayed by the red line in the upper edge of the yellow
section at the right. The significant difference of this solution
with the others might suggest that this belongs to a low
potential area.

B. Intermediate generations

Analyzing an intermediate generation allows
understanding the speed of evolution and the size of the
genetic pool.

As shown in the next image, the population converged in
just a couple of generations to a set of very fit experiments
belonging to a reduced portion of the whole domain space,
but the variation on some parameter values suggest that these
chromosomes are still diverse enough not just to cover a
small high-potential area, but rather a big one, or several
small ones.

Figure 3. Intermediate generation plot.

Also, the variation in individual responses values
suggests that the set of fitter solutions found so far, cover a
rather wide variety of solution instead of converging to a
reduced area.

C. Last exploratory generation

Finally, when analyzing the last exploratory generation
resulting plot, other different aspects of the algorithm
performance can be discovered. Considering that members
of this last generation are evaluated as the overall best-found
chromosome set, their gene values ranges suggest the
optimal parameter values ranges for this deposition model.

At the same time, the variability in individual responses
values for these similarly goal-function evaluated solutions,
suggests that one or more of these responses’ criterion has
not been completely satisfied, evidencing a compromise
when targeting a multi-response model.

Figure 4. Last generation produced by the initial GA execution.

In the previous image, the right side of the plot shows that all
experiments in this generation, displayed in red, are
considered to be almost equally fit, according to the goal
function value. As a confirmation, individual measurements
values vary only a fraction, therefore suggesting that the
whole population contains chromosomes that are similarly
good for the desired result, and that the three responses
criteria are equally solved in this case. But the left side of the
plot evidences a visually significant variation in the
parameters values, once again, suggesting that these
chromosomes belong to different areas of the domain.

IV. ANALYSIS-DRIVEN ADJUSTMENTS

After analyzing the initial exploratory run of the
algorithm, several conclusions and decisions can be made
that finally translate into changes to the algorithm behavior
parameters and try a new adjusted run, potentially leading to
better results. These conclusions might even lead to try a
different local search optimization algorithm in order to
refine the best solution.

Having reviewed the results of the exploratory runs,
analysis-driven adjustments can be made.

 Coverage quality in the first generation might lead to
decide whether a more complete DoE is needed or if a
simpler and less-costly one is enough in a definitive
and longer optimization run of the algorithm.

 Experiments that result in a bad (high) goal value,
discovered in early generations might suggest
redefining the parameter value ranges to leave these
experiments out from the beginning, reducing the total
domain space, although not necessarily reducing the
number of simulations needed.

 In any generation, analyzing the variance on goal
function results might lead to decide a different type
of fitness base in order to properly compare highly
different response-resulting experiments. On the other
hand, an excessively flat plot of the goal function
results is a good candidate for a more sensitive fitness
base, to allow a clearer comparison between similar
experiments.

 If an intermediate generation is too close to the
optimum, it might be the indication that the algorithm
drives the population too aggressively towards
convergence, and left out areas that potentially could
produce better results. This could be adjusted by
reducing the amount of individual mutation allowed,
or even reducing the weight influence of the fittest
parent in crossovers.

 If one or a few experiments survive many generations
and eventually lead to regular results, might be an
indication that the elite population size is too large.
Decreasing the elite set size to only one experiment
might force the algorithm to explore other initially
low-potential areas that might lead to narrow good-
potential sections.

 On the other hand if some very good solutions are
becoming extinct in intermediate generations, it is an
indication of the existence of more than one good
potential area, and a clear recommendation to increase
the size of the elite population.

 If the convergence to the optimum in the last
generation is not evident enough, it might a clear
indication that more generations are needed, or even
that a gradient-based algorithm is needed for the final
approach to the optimum solution.

 A slow convergence with too many low-fitness
chromosomes is an indication that the area in which
the optimum candidate is located might be too narrow.
An indication to adjust the algorithm to converge
more directly. For example, reduce the percentage of
mutants in the whole population, and/or that mutant
population should be produced from elite population
only, and use a larger elite population size.

 Analyzing the last exploratory generation’s individual
responses helps validating if defined weights are right.
If all the near-optimum solutions present a high
variability in one or more individual responses values,
it is an indication that the balance between individual
targets for responses is compromised. Solving this
means assigning the particular response a higher
weight in comparison to the others, in order to
properly understand its real influence in the model
and to balance the goal function evaluation.

V. CONCLUSION

As the technology evolves, the underlying TCAD process
and device simulation models undergo enhancements and
fine-tuning. Using a visual exploratory optimization
approach, which tunes the algorithm to match the changes in
the TCAD models and parameters, has proven to be an ideal
technique to maximize the results using an optimization
algorithm. These optimization algorithms have helped to
better understand the intrinsic aspects of the TCAD models.

VI. ACKNOWLEDGMENT

The latest implementation of the Genetic Algorithm in
SWB Optimizer was implemented by Nikolai Tchernitchin,
Synopsys Chile. The reference Topography example was
designed by Raphael Hude, Synopsys Switzerland. Lars
Bomholt, Synopsys Switzerland, encouraged the
optimization visualization concepts.

REFERENCES

[1] Synopsys Inc, Sentaurus Workbench Optimizer User Guide, MV,
California, USA, 2007.

[2] Synopsys Inc, Sentaurus Topography User Guide, MV, California,
USA, 2007.

[3] Zbigniew Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, Berlin, Germany, 1999.

[4] Holland, J.H, “Adaptation in natural and artificial systems”,
University of Michigan Press, Ann Arbor, 1975.

[5] Grefenstette, J.J, “Incorporating problem specific knowledge into
Genetic Algorithms”, in [6] p.42-60

[6] Davis, L. (editor), “Genetic Algorithms and Simulated Annealing”,
Morgan Kaufmann Publishers, San Mateo, Ca 1987.

[7] Montgomery, D., Design and Analysis of Experiments, John Wiley &
Sons, 2005.

[8] Inselberg, A.. “The plane with parallel coordinates”, Visual Comput.
1, 69–97, 1985.

